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Abstract 

A semiparametric estimator based on an unknown density is uniformly 
adaptive if the expected loss of the estimator converges to the asymptotic 
expected loss of the maximum likelihood estimator based on the true den- 
sity (MLE), and if convergence does not depend on either the parameter 
values or the form of the unknown density. Without uniform adaptivity, the 
asymptotic expected loss of the MLE need not approximate the expected 
loss of a semiparametric estimator for any finite sample. I show that a two- 
step semiparametric estimator is uniformly adaptive for the parameters of 
nonlinear regression models with autoregressive moving average errors. 

1. Introduction 

I study a two-step semiparametric est,imat,or for nonlinear regression models for 
data that consist of ob~ervat~ions zt = (yt,x:) in which the conditional mean 
of a period-t one-dimensional variable yt is a known function h of period-t k- 
dimensional variables xt and parameter vector P = (Po, Pi)' E IRk++'. It is assumed 
that yt is related to xt and a period-t error et as 

Copyright O 1997 by Marcel Dekker, Inc. 
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394 STEIGERWALD 

for all integers t .  The error et is assumed to follow a stationary stochastic autore- 
gressive moving- average (ARMA) process of known order (p, q) with parameter 
vectors p E Rp and 8 E Rq, such that both pp and 8, are not equal to zero. The 
random variable that drives tJhe ARMA process, ut, is assumed independent and 
identically distributed (i.i.d.) with density g that is known only to be a member 
of a family G. The value et is related to past, values of et and to current and past 
values of ut by the difference equation 

for all integers t .  
The researcher uses a two-step procedure to estimate $J = ((Pl, p', 8')' from a 

T-period sample {yt, x:)T=, with observed initial values (ul-,, ..., u g ,  el-p, ..., eo). 1 

The first step is to assume that g is normal and to construct a quasi-maximum- 
likelihood estimator of T.) from (1.1)-(1.2). The second step is to: first, construct, 
a nonparametric estimator of g from the residuals from the quasi-maximum like- 
lihood estimator; second, use the nonparametric estimator of g to construct es- 
timators of the score for T.) (the partial derivative of the true log-likelihood for 
the T-period sample with respect to $J) and the information matrix for $J (the 
expected value of the outer product of the score), both evaluated at the quasi- 
maximum likelihood estimator; and third, construct the two-step semiparametric 
estimator as the sum of the quasi-maximum likelihood estimator with the product, 
of the estimators of the score and the inverse information matrix. 

To judge the performance of such semiparametric estimators, relative tJo any 
other estimators of $ based on the assumption that g is unknown, it is common 
to compute the a~ympt~otic expected loss of the estimators over neighborhoods 
of the true parameter values and true density (henceforth, the truth). The min- 
imum asymptotic expectled loss that can be attained by these estimators is the 
asymptotic efficiency bound. The asymptotic efficiency bound can be no less than 
the asymptotic expected loss of the maximum likelihood estimator based on the 
true density (hereafter termed the maximum likelihood estimator or MLE). If the 
asymptotic efficiency bound is given by tjhe asymptotic expected loss of the MLE 
and if a two-st,ep semiparametric estimator achieves the asymptotic efficiency 
bound, then a two-st,ep semiparametric estimator is asymptotically as efficient as 
the most efficient estimator of $ based on the assumption that g is known. In 
this case, a two-step semiparametric estimator is uniformly adaptive. 

To express the definition of uniform adaptivity symbolically, let f = f ( a ,  $J, g) 
be the density for yt, where dependence of f on t is suppressed for notational 
simplicity. Let Q and C denote neighborhoods of the true parameter values and 
the true density, respectively, and let f T  = f (., $JT, gT) be a density in this neigh- 

ITwo-step proc,edures are commonly used to estimate nonlinear ARMAX models, see Harvey 
[1981]. 
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UNIFORMLY ADAPTIVE ESTIMATION 3 95 

borhood. (Throughout, superscript T denotes values in a neighborhood of the 
truth (4, g) defined for a T-period sample, and subscript T denotes an estimator 
based on a T-period sample.) Let 1 be a continuous and bounded loss function 
t)hat takes GT as an argument and returns a nonnegative real number and let 
J$($, g) be the information matrix for $. The T-period sample expected loss of 
a two-step ~emiparamet~ric e~t~imator gT if the unknown parameters and density 
assume values in a neighborhood of the truth is E~T{~[@(& - gT)]). The as- 
ymptotic distribution of tjhe MLE is Z* - N ( 0 ,  J$($,g)-l), so the asymptotic 
expected loss of the MLE is E[ l (Z*) ] .  

Because the asymptotic efficiency bound can be no less than the asymptotic 
expected loss of the MLE, convergence of E ~ T  { l [~@(&-$~) ] )  to E[1(Zt)] implies 
both that t,he a~ymptot~ic efficiency bound is given by the asymptotic expected loss 
of the MLE and that a two-step semiparametric estimator achieves the asymptotic 
efficiency bound. Thus a two-st,ep semiparametric estimator is uniformly adaptive 
if 

E ~ T { ~ [ & ( G T  - gT)]) -+ E[L(Z*)l. (1.3) 

Because 1 is cont,inuous and bounded, (1.3) follows from t,he weak convergence of 
t,he law of n ( 4 T  - $ T )  tjo Z*, denoted \/T(GT - $T) =+ Z* as T -+ co for a11 
{($T, gT)) E Q x C where * denotes weak convergence. 

Uniform adapt>ivit,y ensures that an adaptive estimator is robust to local per- 
tmbat,ions in g. As Begun et al. (1983, p. 483) stat,e uniform adapt,ivity "captmes 
the local uniformity that should reasonably be required of adaptive estimates when 
g E G is unknown." Local uniformity has an implication that is important for 
applied work. If a t,wo-st,ep ~emiparamet~ric estimator is uniformly adaptive and is 
in a neighborhood of t,he true parameters and density, the finite sample expected 
loss of the estimator is in a neighborhood of the asymptotic expectled loss of the 
RILE. If a two-step semiparametric estimator is not uniformly adaptive, however, 
t,he asymptotic expected loss of the WILE need not approximate the expected loss 
of a t,wo-step semiparametric estimator for any finite sample. 

Uniform adapt,ivit,y implies but is not implied by adaptivit,~. Proof t,hat an 
est,imat,or is uniformly adaptive requires that one establish (1.3). Proof that an 
est,imator is adaptive (e.g. Bickel (1982), Kreiss (1987), and Steigerwald (1992)) 
requires that one establish a condition that is similar to (1.3) but is weaker, in 
that the expectation is taken only over neighborhoods of the true parameters and 
not over neighborhoods of the true density. 

I ask whether a two-step semiparametric estimator is uniformly adaptive. In 
Section 2, I describe in detail a two-stjep estimator. Neighborhoods of the truth, 
details of the loss fimct,ion, and asymptotic efficiency bounds over the neighbor- 
hoods are in Section 3. In Section 4, I prove that a two-step semiparametric 
estimator for all parameters in a nonlinear ARMA model is uniformly adaptive if 
t,he unknown density is symmetric about zero. Proofs of Lemmas 1-4 and Theorem 
1 are contained in the appendix. 
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396 STEIGERWALD 

2. A Two-step Semiparametric Estimator 

The first-step estimator, denoted GT, is the quasi-maximum likelihood estimator 
under the assumption t,hat g is a normal density. The residuals from the first- 

step estimator. { u ~ ( $ ~ ) } ~  are needed t,o construct a nonparametric density t=ll 
e~timat~or. The equat,ion for a period-t residual is obtained by first inverting 
the moving-average polynomial B(z) = zg,oBjzj, where B0 = 1, to obt,ain an 
autoregression of infinit,e order that has coefficients y. Constrliction of a period-t 
residual from an autoregression of infinite order is difficult became it requires 
an infinite number of past values of et. To overcome this difficulty, a recursion 
relating y to the coefficient vector B is derived (a complete derivat,ion is in the 
appendix) that reduces tJhe order of the aut~oregression so that a period-t residual 
is a function only of dat,a observable at period t: 

The period-t residual from GT is obtained by replacing the values of {y', p, p', 0') 
with {y&, 64, p!,, in (2.1), where PT, PT, and GT are the elements of GT that, 
correspond to P,  p, and 8, respectively, and yT is the vector of coefficients from a 
power-series expansion of gT(z)-l. 

The second step begins with the c~nst~ruction of a nonparametric estimator of 
g, denoted g. The est,imator g is a kernel density estimator defined for all u in a 
neighborhood of each ut(qT) as: 

where J(u)  is t,he kernel and ST controls the degree of smoothing.2 Let &) = 

@,/a!, dl!(., & ) / i t  (u, $T) = i t  (u, $T), and let 6(ut  (GT), 4 ~ )  - i t  ( ~ t  ( 4 ~ ) )  and 
gt (ut ($T), $T) Ez gt ( ~ t  ( 4 ~ ) )  . 3  

The estimator is constructed from the sample score and informatlion matrix 
for $, denoted S~,(ZT, 4 , g )  and J$(.zT, $ ,g) ,  respectively, which depend on T- 
period sample, paramet,er value, and density function g. The sample score and 
information matrix for $ (evaluat,ed at qT) are estimated by 

respectively, where Z(ZT, &, j )  = T-I cT=~ +t (ut (GT))', and r$(zr,  GT) equals 

T-I ELl d t ( 4 ~ ) d t  ( 4 ~ ) '  with dt (&P) = 131 and ut (G) given by (2.1). To 
ensure that t,hese e~t~imators are well behaved, extreme values of i t (u ,  GT) are 

2The asymptotic distribution of the semiparametric estimator is independent of kernel choice. 
3Throughout, functions superscripted by (i) are ith derivatives of the function. 
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UNIFORMLY ADAPTIVE ESTIMATION 3 97 

trimmed. That is, %(u, &) equals g,(')(u, qT)/gt(u, $T) if: (i) &(u, qT) > ,AlT; 

(ii) u /  < X2T; and (iii) lg , ( ' ) (~ ,&)/  5 k $ T g t ( ~ , & ) ,  and j t (u ,qT)  equals zero 
otherwise. The parameters (AlT,  )L2T> X3T) are trimming parameters. 

For technical reasons I restrict attention to discretized estimators developed 
by LeCam (1970). A discretized estimator, denoted &, is defined a s  the nearest 
vertex to qT in the c-dimensional lattice of integers scaled by T-%.  The advan- 
tage of using discretized estimators is that to derive the limiting properties of a 
two-step semiparametric estimator I need fewer differentiability and boundedness 
assumptions. Kreiss (1987) Lemma 4.4 proves that for any sequence of random 
variables aT(.), if ar($T) = op(1) with I T :  ($T - $) 1 5 c for some constant 

' 1' 
, . 

c > 0, then aT(G$) = op(l)  for any discrete Tn-consistent estimator I$$. 
The two-step semiparametric estimator is then 

To understand intuitively why the two-step semiparametric estimator is sen- 
sible, consider a two-step estimator for which the T-period sample score and 
information matrix are constructed under the assumption that g is normal. The 
resulting estimator is consistent even if g is not normal. The two-step semipara- 
metric estimator retains this consistency and, because g converges pointwise to 
g, is asymptotically more efficient than a two-step estimator that is constructed 
under a fixed incorrect assumption for g.4 

3. Asymptotic Efficiency Bound 

The neighborhoods of the truth shrink as the sample size grows because it is known 
that semiparametric e~t~imators do not converge uniformly over neighborhoods 
that are fixed independent of sample size. The neighborhood, 9, of $ is the union 
Q = ~ , { 9 ( m ) )  of sets 

where I . / is the Euclidean norm and m E R". The elements of m conform in 
dimension to $ so that m = (mi ,  mb, mb)' . 

As is standard, I use the square-root of the density in defining the neigh- 
borhood of the true density to ensure that the derivative of the log-likelihood 
with respect to the square-root of the density is square integrable.5 Let r ( u )  = 

S(')(u)/g(u) and let T ~ ( u )  = gT(l) (u) /ST(~) .  The neighborhood, C, of g is the 

4The two-step estimators that I consider take one step from the initial estimator. Of course, 
the procedure could be iterated, leading to estimators that take more than one step from the 
initial estimator. The first-order asymptotic theory is identical for these estimators, but the 
finite sample performance may differ. 

5Because the density integrates to one, the square-root of the density, and hence the derivative 
of the log-likelihood with respect to the square-root of the density, is square integrable. 
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398 STEIGERWALD 

union C = u,{C(r))  of sets 

C ( C )  = { { g T }  : I  f i ( ~ ' ? - - f i ) - r  I l u -  0 and E [ T ( ~ ~ )  - T ( ~ ) ] ~  -+ 0 as T + m), 

where gT E G and where r is square integrable and is orthogonal to fie6 
The continuous and bounded loss function 1 is defined to be subconvex, that 

is, that { z  : l ( z )  5 b} is closed, convex, and symmetric for all b > 0. 
To derive the asymptotic efficiency bound over the neighborhoods of the truth, 

I make the following three assumptions. The first two assumptions restrict the 
parameter space and function space over which Q and C are defined. Let, $ E B c 
R", with c = dim($), and partition B as B1 x B2 where ,B E B1 and (p ' ,  8')' E B2. 
Let the lag polynomial p(z) be p(z) = CEopiz i ,  where po = 1. Let w E R" and 
let A(c) = { w  : w'w 5 c) .  Finally, let S+ ($, g )  = limT,, ES$ ( z T ,  $, g )  and let 
J-+ (+, g )  = 1im.r-co EJ* ( Z T ,  $? 9) .  

Assumption 1 : 

a) B1 is a compact subspace of R"'. 
b) B2 is a subspace of RPtq and the elements of B2 satisfy: 

p(z) # 0 and 8 ( z )  # 0 for all I z /I 1; 

p(z) and 8 ( z )  have 1 as their greatest common left divisor 

Assumption 2: 

a) for all g E G ,  gT E 6, g and gT are mutually absolutely continuous. 

for all g E 6: 
b) g is absolutely continuous with respect to Lebesgue measure v. 

c) g(u) >. 0 for all u E IR1. 

d) Z ( g )  =: J [ ~ ( ' )  ( U ) ] ~ / ~ ( U ) ~ U  < m. 

e) limw,o J [ r ( u  - w)  - ~ ( u ) ] ~ ~ ( u ) d u  = 0. 

f )  lirn,,~ w-l J [ T ( u  - w )  - r(u)]g(u)du = Z(g) .  

9) lim,,~ sup,(,) w-I J ~ ( u  + w)g(u)du = -Z(g).  

h) g is symmetric about zero. 

Remark: Assumption l b  ensures that the ARMA process for et is station- 
ary and invertible with no common roots in lag polynomials. Assumptions 2d- 
2g are smoothness re~t~rictions on g ( . )  of the "quadratic-mean differentiability 
type". Lind and Roussas (1977) relate quadratic-mean differentiability condi- 

use I j  . [/,,and 11 . jlFto denote the norms in L2(v) and C2(p), respectively, where C2(u) and 
L2(p)  are spaces of square-integrable functions with respect to the measures v and p. 
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UNIFORMLY ADAPTIVE ESTIMATION 399 

tions to Cram&-type conditions; the latter are pointwise derivative conditions for 
lng(.). Although Kreiss (1987) is able to relax the assumption that g( . )  be sym- 
metric about zero for autoregressive models, Manski (1984) shows that for models 
of the type I consider Assumption 2h cannot be relaxed. Specifically, unless a free 
intercept is included in the conditional mean, adaptivity requires Assumption 2h. 

The third assumption restricts the density f .7 

Assumption 3: 

a )  f i s  absolutely continuous with respect t o  Lebesgue measure p. 

b) f (., $, .) > 0 for  all T E {1,2, ...) and II, E B. 

C )  f ( e ,  $0, .) # f (., $1, a )  whenever at least one element of $0 does no t  equal 
the corresponding element of gl. 

Remark: Assumption 3d ensures that f is asymptotically quadratic over local 
neighborhoods of the truth. To understand Hellinger-differentiability, note that 
Assumption 3d is implied by the following two conditions. The first condition, 
which restricts the temporal dependence introduced by the ARMA error, is that 

I (  @(fi - @) (I,-+ 0 as T --, m, where fT = f ( a ,  aT,gT) is the density for 
jj defined as ijt = aT + ut. The second condition, which ensures that the density 
fT  is differentiable with respect to both the parameter vector and the density for 
ut, is that there exists a function A, the score for a, that is square integrable, and 
there exists a bounded linear operator, S, on the set of square-integrable functions 
such that, with f T  = ?(., aT, gT) and f = f(., a, 9 ) :  

as T - m for all sequences aT - a and @ - fi in L2(v) where gT E G. 
To combine the local neighborhoods of the true parameter values and the true 

density into a neighborhood of f ,  note that if f 4 is Hellinger-differentiable at 
($, g) and {($T, gT))T1l E Q(m) x C(c) for some m E lRc and c E C2(v), then 

as T -+ cc with a E C2(p) and a = Sm+Sr ,  where the square-integrable function 
S is the score for $. Let H = { a  E C2(p) : a = Sm + Ss for some m E Rc and 

'1 separate the assumptions on f ( . , * )  and g(.) because the regressors are assumed to be 
weakly exogenous rather than fixed (Assumption 4a), so the distribution for yt is not a simple 
transformation of the distribution for ut.  
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400 STEIGERWALD 

c E C2(v)). For a E H, let 3 ( a )  be the collection of all sequences {fT} such 
that (3.1) holds. Let 3 = ~ , { 3 ( a ) ) .  The local neighborhood of f is given by 

P ( c )  = {fT E F : V@ 1 1  @ - JJ llrS c}. 
An immediate consequence of Hellinger differentiability of 8 is that the log- 

likelihood ratio over local neighborhoods of the truth, defined for a sample of T 
observations as 

is asymptotically normal. That is, the log-likelihood ratio is locally asymptotically 
normal. 

Lemma 1. If Assumptions 1-3 are satisfied, then the log-likelihood ratio defined 
in (3.2) is locally asymptotically normal. 

Computation of the asymptotic efficiency bound also depends on Hellinger 
differentiability of f t .  Because f is Hellinger-differentiable at (+, g) and each G 
that satisfies the definition of C(c) is square integrable, Theorem 3.2 from Begun et 
al. (1983) implies that, t,he asymptotic efficiency bound for estimators of 11, based 
on the assumption that g is unknown (the estimators are generically denoted as 
44 is 

lim lim inf sup ~p-11 [f i ($T - $ J T ) ] }  > E{l(Z)}, 
c-*m T-+m ,jT f F(4 

(3.3) 

where Z N N ( 0 ,  V($, g)-'). 
From (1.3), a two-step semiparametric estimator qT is uniformly adaptive if 

it attains the asymptotic efficiency bound (3.3) and if V(+,g) = &($,g), where 
&,($, g)-l is the covariance matrix of the asymptotic distribution of the MLE. 
To understand the role of the condition V($ ,  g) = J, (+, g), note that parametric 
estimators do not make use of information about $ contained in the unknown 
density; this information equals the population projection of S+($, g) onto the 
tangent set, I. The tangent set consists of the scores for all possible unknown 
densities, so it consists of functions of ut because each S is a function of u ~ . ~  Let 
R$($, g) be the vector of residuals from the population projection of S,($J, g) 
onto 7.  Then R*($,g) represents the information about + contained only in 
the parametric part, of the specification, so V($, g) = R, (+ , g) R, (+, g)' . If the 
population projection of S$($, g) onto 7 is zero, the unknown density contains 
no information about $, so R+(+, g) = S+($, g) and V(+, g) = Ji(+, g). Thus if 
S+ ($, g) is orthogonal to I, then V(+, g) = &, (+, g) and the asymptotic efficiency 
bound is given by the asymptotic expected loss of the MLE. 

8Formally, the tangent set is the mean-square closure, over all possible underlying densities, 
of the set of linear combinations of S that conform in dimension to S. 
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UNIFORMLY ADAPTIVE ESTIMATION 40 1 

4. Uniformly Adaptive Estimation 

To provide sufficient conditions for qT to be uniformly adaptive I begin by proving 
that qT is regular. Specifically, qT is regular if 

The proof that 4 T  is regular uses the following assumpt,ions on the conditional 
mean, the moments of ut ,  and the nonparametric density estimator. Let hg) be 

the derivative of h with respect to pi, let hEkj be the derivative of h with respect, 
to pi and p,, and let Mz"j be a (k + 1) x (k + 1) matrix. 

Assumption 4: 

a) {x~):=~ is weakly exogenous for $J. 

b) h(.,  p) is twice continuously differentiable with respect to P for all P E 

B1. 

c) T-I zTZ1 hS)(xt+,, P) he:) (xt , p) + M$ for each i, j E (0, . ., k) and every 
integer s as T + m uniformly in ,B E B1, where M$ -+ 0 as s --+ m. 

d) maxt ~ - ; h &  (xt, .) + 0 for each 1 E (0, ..., k) as T - m uniformly in 
P E B1. 

e) ih(l)(xt, 0) j < C l  + c2 1 s t  I .  
t-1 T f) limt+oo S l l p ~  Ti Xt-i < 00. 

g) $ h i ) ( x t ,  ,BT)1 5 dl + d2 \xt  1 for each 1 E (0, ..., k) uniformly in T. 

h) E[ut] = 0, E[u;] > O1 E[ut4] < 00. 

Remark: Assumptions 4c-4f ensure that the nonlinear conditional mean 
function satisfies conditions for consistent estimation of the covariance ma- 
trix (note t,hat I $ ) <  m from Lemma 6.1 in Kreiss (1987)). Note 
t,hat the regressors do not have to be fixed according to Assumption 4; they 
need only be weakly exogenous. Assumption 4e allows specifications of the 
form yt = Po + et. For this specification xt = z: and h(., ,) is a linear 
function. 

The fifth assumption restricts the nonparametric density est,imator. 

Assumption 5: 

a) J ( . )  is twice continuously dzfferentiable. 

b) (ST, X ~ T ,  s T X ~ T )  -f 0, ( X ~ T ,  X ~ T )  0 0 1  S T ~ X Z T  = o ( ~ ) ,  and = 0($)  
as T + oo. 
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402 STEIGERWALD 

Remark: The last two conditions in Assumption 5b are the result, of the de- 
pendence that arises because both dt (.) and gt(. ,  .) are functions of {u t  

To prove that a two-step semiparametric estimator is regular, I require the 
following three lemmas. 

Lemma 2. If Assumptions 1-5 are satisfied and @ is a discrete Ti-consis tent  
estimator of $, then 

~ ( z T , ' $ $ , g )  - Z ( g )  = o ~ ( l ) a n d r $ ( z T , $ $ )  - r ~ ( $ )  = oJ'(l) ,  

so that &(zT ,  Yi)+, g)  is a consistent estimator of &($, g ) .  
The third lemma establishes consistency of the semiparametric score. 

Lemma 3. If Assumptions 1-5 are satisfied and $$ is a discrete T$-consistent 
estimator of $, then 

The next lemma establishes asymptotic linearity. 

Lemma 4. If Assumptions 1-5 are satisfied, then 

with gT = $ + ~ - ; r n  for any rn E RC. 
With these preliminary lemmas, I prove that a two-step semiparametric esti- 

mator is regular. 

Lemma 5. If Assumptions 1-5 are satisfied, then the two-step semiparametric 
estimator $T defined i n  (2.2) is regular. 

I now prove that local asymptotic normality of the log-likelihood ratio and 
regularity of qT are sufficient for GT to be uniformly adaptive. 

Theorem 1. If Assumptions 1-5 are satisfied, then the two-step semiparametric 
estimator $& is uniformly adaptive for nonlinear A R M A  models of (1.1)-(1.2). 

Remark: To understland why a two-step semiparametric estimator is adaptive 
for the model of (1.1)-(1.2),  note that because 6 is a family of densities that, 
are symmetric about zero under Assumption 2,  S is an even function of ut SO 7 
consists of even functions of u t .  Also because 6 is a family of densities that are 
symmetric about zero, r ( u t )  is an odd function of u t .  Therefore r ( u t )  is orthogonal 
to 7, so the projection of r(ut)  onto 7 is zero. Because the remaining component 
of S$($,  g )  is independent of u t ,  S$($ ,  g )  is orthogonal to 7 and the asymptotic 
efficiency bound is given by the asymptotic expected loss of the MLE. 
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UNIFORMLY ADAPTIVE ESTIMATION 403 

5. Conclusion 

For the parameters of a nonlinear regression model with ARMA errors, I estab- 
lish the minimum asymptot,ic expected loss for a semiparametric estimator. The 
asymptotic expected loss is constructed over neighborhoods of the true parameter 
values and the true density. Because the minimum asymptotic expected loss of 
a semiparametric estimator is equivalent to the asymptotic expected loss of the 
MLE, the semiparametxic estimator is uniformly adaptive. 
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A. Appendix 

To derive the formula for the residual given in (2.1), note that from the definition 
of t,he ARMA error 

where L is the lag operator. Under Assumption 1, for each (., 0) E B2 there exists 
an 7 > 1 such that B(z)-' = CZdyizi, with yo = 1, for all I z )< 7. Replace 
B(L)-I with C s  yiLi in (A.l) and note that CFz0 pjet-j = CE=o Bkut-k: 

The power series coefficients y sat,isfy the recursion 

for all i > 0 where y, = 0 if s < 0, which in turn implies that C~Z; u-, 0kyt+,-k 
CZt yiLi Bkut-k. Replacing C,""=, yiLi CEZo Okut-k with C:S; U-, 0kyt+,-k 
on the right-hand side of (A.2) yields (2.1). 

In Steigerwald (1996) it is shown tjhat 

1) (1) where at(qT)' = [ h g , ) ( ~ ~ - ~ ,  ,LIT) - xy=l p r h h  pT), . . . , ho; (ztpi, pT)- 
1) C?=l p7hLk (st-iFj,  PT), e t - i -~ ($~ ) ,  . t - i - q ( $ T )  t - i - ~ ~ )  , ~ t - i - ~ ( $ ~ ) ] .  

In the proofs that follow: Ic is the c x c identity matrix; Ct denotes c:=,; and 
--tP denotes convergence in pr~babilit~y. 

A.1. Proof of Lemma 1 

Because f is Hellinger-differentiable at ($,g), t,he densities f and f T  satisfy 
(3.1). The result then follows from Lemma 2.1 in Begun et al. (1983). 0 
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A.2. Proof of Lemma 2 

Let &(d, 9) = Z(g)r+(@), where r+(d) = E [ZZO Z ~ O  ~ i ~ j ~ ~ ( d ) v l ( d ) ' ] .  1 first 
-d 2 show that Z(zT, @, 3) - Z(g) = T-' Ct +t (ut(gT)) - Z(g) = op(l). If dT is 

the true value, then { T ( u ~ ( $ ~ ) ) ) ~ ~ ~  are independent and identically distributed 
random variables, so T-' Ct T ( u ~ ( $ J ~ ) ) ~  - Z(g) = op(l). By Lemma 4.1 in Bickel 
(1982) T-l Ct . i , ( ~ , ( $ ~ ) ) ~  - Z(g) = op(1). Because LT is locally asymptotically 
normal (Lemma l),  convergence with (gT, g) as true values implies convergence 
with ($, g) as true values. Finally, by Lemma 4.4 in Kreiss (1987) I replace gT 
with q$ in T-' zt +t(ut($T))2-Z(g) = op(l) ,  yielding T-I Zt ~ t (u t ($$ ) )~  -Z(g) = 

op(1). 
I next establish that T-' Ct dt(q+)dt(@)'- I?+($) = op(1). The vector dt($+) 

is partioned such that the first k + 1 components (for ,L?) are of the form 

the next p components (for p) are of the form 

and the last q components (for 8 )  are of the form 

Kreiss expression (6.11) establishes convergence for the last p + q components of 
dt(gT) (Lemma 6.1 in Kreiss is necessary for the result). Under Assumptions 4e 

1) and 4f the behavior of hk)(st-i,  PT) - Z7=1 $ha (xt-i+, ,OT) is restricted so that 
by Lemma 6.1 from Kreiss {dP,,t ( $ J ~ ) ) ~ > ~  forms a convergent sequence. Hence 
the result for the last p + q components of dt(gT) is preserved for the first k + 1 
components of dt(GT), which are the components corresponding to ,L?, so by Lemma 
4.4 from Kreiss T-I Ct dt ($$)dt ($$ ) I  - I?+ ($) = op (1). 

A.3. Proof of Lemma 3 
2 

By definition E iis*(rr, dT, 4) - S+(LT, gT, S) 11  equals 

Theorem 5.1 in Kreiss establishes that T-'E{Ct dtj(gT) [+t (ut($')) - T (U,($T))]}~ 

=op(l)  for j = k + 2 ,  . . . , C. TO ensure that this result holds for j = 1 , .  . . , k + 1, 
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406 STEIGERWALD 

1 )  I need only show that x:=o {=::A $ [ h g ) ( ~ ~ - ~ ,  P T )  - xy=i p ~ h i l  ( ~ - i - ~ ;  p T ) ] l 2  
is bounded uniformly in t .  As shown in the proof of Lemma 2, Assumptions 4e 

t-1 T h ( l )  1) and 41 ensure that, 7,  [ p, ( P T )  - Ey=l prhbL (xt-i-j1 pT) ]  is bounded 
uniformly in t because k is fixed independently of t .  Thus 

so by Lemma 4.4 in Kreiss 

A.4. Proof of Lemma 4 

Observe that J'$ ($, g ) ~  f (q+ - $) + S$ (zT , $+, g )  - S$ ( Z T ,  $, g )  equals 

where I use the notation 

with Ft-l = u { x t ,  zt-l,  zt-zl . . .). By construction Lemma 4 follows from 

and 
y$(zT1 '&$) = O P ( ~ )  

Proof of (A.5).  I first show that, 

Let qt(gT) = ~ ( ~ t ( $ ~ ) ) d t ( $ ~ )  - E [ ~ ( u t ( ' $ ~ ) ) d t ( $ ~ )  I Ft-11, SO Q$(zT,  g T )  = 

T - f  C ,  q (gT ) .  Because {qt($T) - qt($))  is a martingale difference sequence con- 
dit,ional on Ft-1, 

2 
Kreiss Lemma 6.4 e~t~ablishes that T-' Ct E [q t j ($T)  - q t j ( $ ) ]  = o p ( l )  for j = 

k + 2, . . . , c, which are the components of qt ($T)  - qt($) that, correspond to p and 
0 (Lemma 6.1 in Kreiss is necessary for the result). Under Assumption 4g it is 
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(1) t,he case that / h;)(xt-,, pT) - hg (zt-i, P )  151 PT - P 1 (dl + d2 1 XI-, 1 ) .  SO by 
Lemma 6.1 from Kreiss the result for the last p+ q components of qt (GT) - qt ($) is 
preserved for the first k+ 1 components of qt ( g T )  -qt ($), which are the components 
corresponding to P. Thus Q$(zT, QT) - Q$(zT, $) = op(l ) ,  SO by Lemma 4.4 from 
Kreiss Q$(ZT, 7&) - QQ(ZT, $1 = O P ( ~ ) .  

Proof of (A.6). I first show t>hat, 

Because g is symmetric about zero 

For notational convenience, let W T , ~  = dt (?/J~)'[J+ ($, g ) ~ ] - i  mT (recall (A.4)), so 

which is bounded by (recall that A(c) = {w : w'w 5 c), so as T -t oo, W T , ~  E 

44): 

From tJhe definition of $T it follows t,hat J$ ($, g)Ti  ($7 - l;i) = & ($, g) mT, 
SO 

For large valnes of T ( T  -+ m) and small values of c (c -+ 0): 

by Assumpt,ion 2g. By Lemma 2: 

By Lemma 4.4 from Kreiss Y+(zT, @) = op ( l ) .  

A.5. Proof of Lemma 5 

To show that, GT is regular, I use (2.2) to rewrite the left-hand side of the regularity 
condition (4.1) as 
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408 STEIGERWALD 

J$($, g ) ~ ' ( &  -'$) +A('$, ~)J$(zT, '$%, ~)-ls$kT> $$, B) -S$(ZT, $1 9 ) .  (A.9) 

Because tJhe functional JQ() is strictly positive, Lemma 2 implies that (A.9) equals 

By Lemma 3, (A. 10) equals 

where t,he last equal it,^ follows by Lemma 4. 

A.6. Proof of Theorem 1 

To prove Theorem 1, I prove that regularity of &- is sufficient for $T to be 
uniformly adaptive. By Lemma 5, dT is regular, that is 

T ' ( ~ T  - $) - J$(+, s)-~S$(ZT, $,g) = O P ( ~ ) .  (A. 12) 

From the definition of $JT: 

[ J$ ($ ,~ )T I ' (~T  - gT) = [ J $ ( $ , ~ ) T ] ' ( ~ T  - '$) - mTl 

From Lemma 1, L~ is locally a~ymptot~ically normal, so that convergence in (A.13) 
with ($, g) as true values implies convergence under the assumption that, (qT1 gT) 
are tjrue values. As a result, (A.13) implies that, 

T T - &  T T [ J Z L ( $ ~ , ~ ~ ) T ] ~ ( & ~  -gT) -J+($ , g  ) ~S$(ZT,$ , g  ) - m ~  = O P ( ~ ) .  (A.14) 

From Lemmas 4.2 and 4.3 in Fabian and Hannan (1982) 

Because rT(u) -+P r (u)  (from the definit,ion of C(q) in Section 3) and because 
both S$(., ., .) and J+(., .) are continuons with respect to r ( u )  (note that, both 
S$(., ., .) and J$ (., .) are linear in T(U)  and ~ ( u ) ~ ,  respectively) it follows that 
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UNIFORMLY ADAPTIVE ESTIMATION 409 

and consequently that, 

for all ($T,gT) E Q x C. 
Because 1 is a continuous and bounded loss function, (A.18) t,oget,her with 

Theorem 5.2 from Billingsley (1968) imply 

for all (qbT, gT) E x C. 
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